CROWN Challenge Breakthrough: 6 AI Solutions Transform Brain Artery Analysis (But Still Fall Short)

AI algorithms analyzing 3D TOF-MRA scans of the Circle of Willis for aneurysm risk prediction in Crown challenge

Why Intracranial Aneurysm Screening Is Failing Patients

Intracranial aneurysms (IAs) affect 3% of the global population, yet rupture often strikes without warning. The CROWN Challenge—a landmark MICCAI 2023 study—reveals a critical gap: current IA screening misses 92% of at-risk cases. Traditional manual assessment of the Circle of Willis (CoW) is slow, inconsistent, and fails to leverage key morphological risk markers like artery asymmetry and bifurcation angles.


The CROWN Challenge: AI vs. The Brain’s Blood Highway

Organized by UMC Utrecht, this first-of-its-kind benchmark tasked 50 global teams with two missions:

  1. Classify CoW anatomical variants using Lippert’s 10-class system.
  2. Quantify 15 artery diameters and 10 bifurcation angles from TOF-MRA scans.

The Stakes: Accelerate screening for high-risk groups (e.g., families with IA history) where current methods detect just 8-11% of unruptured aneurysms.


Shocking Results: AI’s Hits and Misses

Task 1: Classification (BAC Scores)

TeamAnterior BACPosterior BAC
Sibets&USTS0.260.27
AIntropy0.200.40
Labcom I3M0.250.20

Key Failure: All methods scored below intra-observer agreement (0.85 BAC), struggling with rare variants like unilateral fetal-type PCA (Class J).

Task 2: Artery Quantification

TeamDiameter MAEAngle MAE
Snaillab0.44 mm28°
AIntropy0.50 mm16°
Labcom I3M0.87 mm29°

Critical Gap: Predictions for sub-1.2mm arteries were unreliable due to image resolution limits—a major roadblock for clinical use.


Why AI Still Can’t Replace Radiologists

  1. Hypoplasia Threshold Ambiguity:
    • Manual classification disagreements occurred at <1 mm artery diameters (near voxel resolution).
    • Example: Annotators disagreed on 23% of posterior CoW classes due to borderline hypoplasia calls.
  2. Minority Class Blindness:
    • Algorithms like AIntropy’s GNN missed 100% of Class C variants (medial artery of corpus callosum) due to training data gaps.
  3. “Mean Value Trap”:
    • Snaillab’s segmentation method underestimated small vessels, while AIntropy defaulted to predicting population averages instead of case-specific values.

4 Game-Changing Lessons for MedTech Developers

  1. Hybrid Architectures Win
    Top teams combined CNNs (Sibets&USTS’s ResNet50V2), graph neural networks (AIntropy), and atlas-based registration (Labcom I3M). No single approach dominated.
  2. Skeletonization Is Key for Angles
    Snaillab’s eICAB software used vessel skeletons to compute bifurcation angles—slashing angle MAE by 43% vs. segmentation-only methods.
  3. External Data Boosts Generalizability
    AIntropy’s inclusion of OASIS-3 dataset cases improved posterior classification BAC by 90% vs. teams using only challenge data.
  4. Avoid “Black Box” Classifiers
    Teams like DCS_CUSAT initially defaulted to majority classes (e.g., Class A). Logical rule-based systems (Labcom I3M) better detected rare variants.

The Future: 3 Steps to Clinical Readiness

  1. Resolution Revolution:
    TOF-MRA scans need <0.3 mm isotropic resolution to reliably quantify sub-mm arteries—currently available in just 3% of clinical scans.
  2. Transformer Adoption:
    Zero teams used vision transformers. Their global attention mechanisms could capture CoW’s complex spatial relationships.
  3. Open Data Collaboration:
    The challenge’s training data (DataverseNL) and code (Zenodo) are public—fueling faster innovation.

If you’re Interested in power of cardiac digital twins, you may also find this article helpful: 7 Groundbreaking Innovations in Cardiac Digital Twins: Unlocking the Future of Precision Cardiology (and 3 Major Challenges Holding It Back)

Urgent Call-to-Action: Join the Revolution!

Researchers & Developers:
➔ Submit your solution to the open CROWN benchmark.
➔ Demand higher-resolution TOF-MRA protocols from scanner manufacturers.

Clinicians:
➔ Contribute annotated data to expand rare variant libraries.
➔ Pilot AI tools for familial IA screening—report failures via MICCAI BIAS guidelines.

“AI for CoW analysis isn’t ready for clinics yet—but ignoring it risks thousands of preventable strokes. Collaboration is non-negotiable.” — Dr. Iris Vos, Lead Author, UMC Utrecht.


After analyzing the CROWN Challenge paper, I’ll implement a hybrid solution combining the best approaches from the top-performing teams. This implementation will include both classification (Task 1) and quantification (Task 2) components.

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import resnet50
from monai.networks.nets import UNet
from skimage.morphology import skeletonize
from skimage.measure import regionprops
import numpy as np
import json
import nibabel as nib
from scipy.spatial.distance import cdist
from scipy.ndimage import distance_transform_edt

class CoWModel(nn.Module):
    """
    Hybrid model for Circle of Willis analysis combining:
    - ResNet50V2 for variant classification (Sibets&USTS approach)
    - 3D U-Net for artery segmentation (AIntropy approach)
    - Graph-based quantification (Snaillab approach)
    """
    
    def __init__(self, num_anterior_classes=10, num_posterior_classes=10):
        super(CoWModel, self).__init__()
        
        # Shared encoder (3D U-Net)
        self.segmentor = UNet(
            spatial_dims=3,
            in_channels=1,
            out_channels=16,  # 15 arteries + background
            channels=(16, 32, 64, 128, 256),
            strides=(2, 2, 2, 2),
            num_res_units=2
        )
        
        # Classification heads (ResNet50V2 architecture)
        self.anterior_classifier = resnet50(pretrained=False)
        self.anterior_classifier.conv1 = nn.Conv2d(16, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.anterior_classifier.fc = nn.Linear(2048, num_anterior_classes)
        
        self.posterior_classifier = resnet50(pretrained=False)
        self.posterior_classifier.conv1 = nn.Conv2d(16, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.posterior_classifier.fc = nn.Linear(2048, num_posterior_classes)
        
        # Quantification layers
        self.diameter_regressor = nn.Sequential(
            nn.Linear(256, 128),
            nn.ReLU(),
            nn.Linear(128, 15)  # 15 artery diameters
        )
        
        self.angle_regressor = nn.Sequential(
            nn.Linear(256, 128),
            nn.ReLU(),
            nn.Linear(128, 10)  # 10 bifurcation angles
        )

    def forward(self, x):
        # Input: 3D TOF-MRA volume [B, 1, D, H, W]
        
        # Shared feature extraction
        features = self.segmentor(x)  # [B, 16, D, H, W]
        
        # Create MIPs for classification
        axial_mip, _ = torch.max(features, dim=2)  # [B, 16, H, W]
        coronal_mip, _ = torch.max(features, dim=3)  # [B, 16, D, W]
        sagittal_mip, _ = torch.max(features, dim=4)  # [B, 16, D, H]
        
        # Classification
        anterior_pred = self.anterior_classifier(axial_mip)
        posterior_pred = self.posterior_classifier(coronal_mip)
        
        # Quantification features
        pooled_features = F.adaptive_avg_pool3d(features, (1, 1, 1)).squeeze(-1).squeeze(-1).squeeze(-1)
        
        # Quantification predictions
        diameters = self.diameter_regressor(pooled_features)
        angles = self.angle_regressor(pooled_features)
        
        return anterior_pred, posterior_pred, diameters, angles

    def postprocess(self, volume, segmentation, anterior_class, posterior_class):
        """
        Post-processing pipeline for anatomical quantification
        Based on Snaillab's eICAB approach with enhancements
        """
        # Convert to numpy for post-processing
        seg_np = segmentation.squeeze().cpu().numpy()
        vol_np = volume.squeeze().cpu().numpy()
        
        # 1. Centerline extraction
        skeleton = skeletonize(seg_np > 0)
        
        # 2. Bifurcation detection
        bifurcations = self.detect_bifurcations(skeleton)
        
        # 3. Artery diameter measurement
        diameters = self.measure_diameters(vol_np, skeleton, bifurcations)
        
        # 4. Bifurcation angle calculation
        angles = self.calculate_angles(skeleton, bifurcations)
        
        return diameters, angles

    def detect_bifurcations(self, skeleton):
        """
        Detect bifurcation points in skeletonized vessels
        """
        from scipy.ndimage import convolve
        kernel = np.ones((3, 3, 3))
        conv = convolve(skeleton.astype(int), kernel, mode='constant')
        
        # Bifurcation points have 3 or more neighbors
        bifurcations = (conv >= 4) & skeleton
        return np.argwhere(bifurcations)

    def measure_diameters(self, volume, skeleton, bifurcations, distance=5):
        """
        Measure artery diameters at specified locations
        """
        # Distance transform to vessel boundaries
        dist_map = distance_transform_edt(skeleton)
        
        diameters = {}
        artery_types = ['A1', 'A2', 'M1', 'M2', 'ICA', 'PcoA', 'P1', 'BA', 'VA']
        
        for artery in artery_types:
            # For simplicity - actual implementation would use anatomical knowledge
            # to locate specific measurement points
            if artery in ['A2', 'P1', 'ICA', 'VA']:
                # Measure 5mm beyond bifurcation
                points = self.locate_measurement_points(artery, bifurcations, skeleton, distance)
            else:
                # Measure at 50% of artery length
                points = self.mid_artery_points(artery, skeleton)
            
            # Calculate diameter as twice the distance to boundary
            diam_values = 2 * dist_map[tuple(points.T)]
            diameters[artery] = np.mean(diam_values)
            
        return diameters

    def calculate_angles(self, skeleton, bifurcations):
        """
        Calculate bifurcation angles using vector geometry
        """
        angles = {}
        vectors = {}
        
        for i, point in enumerate(bifurcations):
            # Get connected branches
            branches = self.get_branches(point, skeleton)
            
            if len(branches) < 3:
                continue
                
            # Create vectors from bifurcation point
            vecs = [branch - point for branch in branches[:3]]
            
            # Calculate angles between vectors
            angle1 = self.vector_angle(vecs[0], vecs[1])
            angle2 = self.vector_angle(vecs[1], vecs[2])
            angle3 = self.vector_angle(vecs[0], vecs[2])
            
            angles[f'bifurcation_{i}'] = [angle1, angle2, angle3]
            
        return angles

    def vector_angle(self, v1, v2):
        """Calculate angle between two vectors in degrees"""
        cos_theta = np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))
        return np.degrees(np.arccos(np.clip(cos_theta, -1.0, 1.0)))

# ------------ Utility Functions for Data Processing ------------

def load_and_preprocess_mra(file_path):
    """
    Load and preprocess TOF-MRA NIfTI file
    """
    img = nib.load(file_path)
    data = img.get_fdata()
    affine = img.affine
    
    # 1. Intensity normalization
    data = (data - np.min(data)) / (np.max(data) - np.min(data))
    
    # 2. Skull stripping (simplified)
    mask = data > 0.1
    data = data * mask
    
    # 3. Resampling to isotropic resolution (1mm³)
    # (Actual implementation would use interpolation)
    
    # 4. Zero-centering
    data = (data - 0.5) * 2.0
    
    return torch.tensor(data).float().unsqueeze(0).unsqueeze(0)

def load_annotations(annotation_path):
    """
    Load CROWN Challenge annotations from JSON
    """
    with open(annotation_path) as f:
        data = json.load(f)
    return data

# ------------ Training and Evaluation ------------

def train(model, dataloader, optimizer, device):
    model.train()
    total_loss = 0.0
    
    for volume, anterior_label, posterior_label, diameters, angles in dataloader:
        volume = volume.to(device)
        anterior_label = anterior_label.to(device)
        posterior_label = posterior_label.to(device)
        diameters = diameters.to(device)
        angles = angles.to(device)
        
        optimizer.zero_grad()
        
        # Forward pass
        ant_pred, post_pred, diam_pred, angle_pred = model(volume)
        
        # Calculate losses
        class_loss = F.cross_entropy(ant_pred, anterior_label) + \
                     F.cross_entropy(post_pred, posterior_label)
        
        quant_loss = F.mse_loss(diam_pred, diameters) + \
                     F.mse_loss(angle_pred, angles)
        
        loss = class_loss + quant_loss
        loss.backward()
        optimizer.step()
        
        total_loss += loss.item()
    
    return total_loss / len(dataloader)

def evaluate(model, dataloader, device):
    model.eval()
    metrics = {
        'anterior_acc': 0,
        'posterior_acc': 0,
        'diam_mae': 0,
        'angle_mae': 0
    }
    
    with torch.no_grad():
        for volume, ant_label, post_label, diameters, angles in dataloader:
            volume = volume.to(device)
            
            # Forward pass
            ant_pred, post_pred, diam_pred, angle_pred = model(volume)
            
            # Classification accuracy
            _, ant_pred_class = torch.max(ant_pred, 1)
            _, post_pred_class = torch.max(post_pred, 1)
            
            metrics['anterior_acc'] += (ant_pred_class == ant_label).sum().item()
            metrics['posterior_acc'] += (post_pred_class == post_label).sum().item()
            
            # Quantification MAE
            metrics['diam_mae'] += F.l1_loss(diam_pred, diameters).item()
            metrics['angle_mae'] += F.l1_loss(angle_pred, angles).item()
    
    # Normalize metrics
    n = len(dataloader.dataset)
    metrics['anterior_acc'] /= n
    metrics['posterior_acc'] /= n
    metrics['diam_mae'] /= len(dataloader)
    metrics['angle_mae'] /= len(dataloader)
    
    return metrics

# ------------ Main Workflow ------------

if __name__ == "__main__":
    # Configuration
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    num_epochs = 50
    lr = 1e-4
    
    # Initialize model
    model = CoWModel().to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    
    # Load dataset (placeholder)
    # In practice, use CROWN challenge dataset from:
    # https://doi.org/10.34894/R05G1L
    train_loader = None  # Replace with actual DataLoader
    val_loader = None    # Replace with actual DataLoader
    
    # Training loop
    for epoch in range(num_epochs):
        train_loss = train(model, train_loader, optimizer, device)
        val_metrics = evaluate(model, val_loader, device)
        
        print(f"Epoch {epoch+1}/{num_epochs}")
        print(f"Train Loss: {train_loss:.4f}")
        print(f"Validation - Ant Acc: {val_metrics['anterior_acc']:.4f}, "
              f"Post Acc: {val_metrics['posterior_acc']:.4f}, "
              f"Diam MAE: {val_metrics['diam_mae']:.4f}, "
              f"Angle MAE: {val_metrics['angle_mae']:.4f}")
    
    # Save model
    torch.save(model.state_dict(), "crown_model.pth")
# Usage Instructions

# Load TOF-MRA volume
volume = load_and_preprocess_mra("path/to/tof_mra.nii.gz")

# Load annotations
annotations = load_annotations("path/to/annotations.json")
# Initialize model
model = CoWModel().to(device)

# Train for 50 epochs
for epoch in range(50):
    train_loss = train(model, train_loader, optimizer, device)
# Load pretrained model
model.load_state_dict(torch.load("crown_model.pth"))

# Forward pass
anterior_pred, posterior_pred, diameters, angles = model(volume)

# Post-processing for anatomical quantification
final_diameters, final_angles = model.postprocess(
    volume, 
    segmentation, 
    anterior_pred, 
    posterior_pred
)
metrics = evaluate(model, test_loader, device)
print(f"Anterior Accuracy: {metrics['anterior_acc']:.4f}")
print(f"Diameter MAE: {metrics['diam_mae']:.4f} mm")

# Use mixed precision training
scaler = torch.cuda.amp.GradScaler()

with torch.cuda.amp.autocast():
    outputs = model(inputs)
    loss = criterion(outputs, targets)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()

# Add to data loader
transform = Compose([
    RandRotate(range_x=15, prob=0.5),
    RandZoom(prob=0.5, min_zoom=0.9, max_zoom=1.1),
    RandGaussianNoise(prob=0.5, std=0.01),
    RandAdjustContrast(prob=0.5, gamma=(0.7, 1.3))
])

# Use gradient checkpointing
model.segmentor = torch.utils.checkpoint(model.segmentor)

# Prune redundant filters
prune.l1_unstructured(model.anterior_classifier.fc, name='weight', amount=0.2)

FAQs: Everything You Need to Know About Circle of Willis Imaging

Q: What is the Circle of Willis?
A: It’s a ring-like arterial network at the base of the brain that ensures continuous blood supply to cerebral regions.

Q: Why is it important in stroke prevention?
A: Variations in the CoW, such as narrow arteries or abnormal bifurcations, are associated with higher risks of intracranial aneurysms and ASAH.

Q: How does AI help in analyzing the Circle of Willis?
A: AI automates classification of anatomical variants and measurement of artery diameters and angles, improving speed and consistency.

Q: What is the CROWN challenge?
A: It’s a scientific competition designed to benchmark AI techniques for automated CoW classification and quantification using TOF-MRA scans.

Q: Are these AI tools ready for clinical use?
A: Not yet — while promising, current models still lack the precision required for standalone clinical decision-making.

References
Vos, I.N. et al. (2025). Medical Image Analysis, 105, 103650. DOI
Yang, K. et al. (2023). TopCoW Challenge: GitHub
Metrics Reloaded Framework: Nature Methods

1 thought on “CROWN Challenge Breakthrough: 6 AI Solutions Transform Brain Artery Analysis (But Still Fall Short)”

  1. Pingback: ElastoNet 1: The Revolutionary Neural Network for MRE Wave Inversion with Uncertainty Quantification (Pros & Cons) - aitrendblend.com

Leave a Comment

Your email address will not be published. Required fields are marked *