ActiveKD & PCoreSet: 5 Revolutionary Steps to Slash AI Training Costs by 90% (Without Sacrificing Accuracy!)

Vision-language model distilling knowledge to a compact AI, reducing training costs by 90% with ActiveKD and PCoreSet

The $100 Billion Problem: AI’s Annotation Nightmare

Training AI models is expensiveslow, and painfully data-hungry. In specialized fields like healthcare or satellite imaging, labeling a single image can cost $50–$500. For a 1,000-class dataset like ImageNet? Millions. But what if you could:

  • ✅ Cut annotation budgets by 90%?
  • ✅ Train models 10x faster?
  • ✅ Boost accuracy with less data?

Meet ActiveKD and PCoreSet—a breakthrough framework from KAIST and VUNO Inc. that’s turning active learning (AL) and knowledge distillation (KD) into a cost-slashing superpower. Backed by 11 real-world datasets (including ImageNet), it’s rewriting the rules of efficient AI training.


Step 1: Why Active Learning Alone Fails (The Hidden Bottleneck)

Active learning (AL) aims to reduce labeling costs by selecting only the “most informative” data for annotation. But in practice:

  • ❌ Uncertainty sampling favors edge cases, ignoring class diversity.
  • ❌ Diversity-based methods (like CoreSet) struggle in high-dimensional spaces.
  • ❌ Class imbalance skews results, wasting queries on overrepresented categories.

Result: Models still need thousands of labeled examples. Accuracy plateums. Costs stay high.


Step 2: The Knowledge Distillation “Hack” That Changes Everything

Knowledge distillation (KD) compresses giant models (like CLIP) into compact, task-specific versions. Traditionally, it requires massive labeled datasets—the opposite of AL’s goal.

ActiveKD’s genius: Leverage vision-language models (VLMs) as “teachers” with zero-shot capabilities. No task-specific labels needed!

  • How it works:
    1. A VLM teacher (e.g., CLIP) generates soft labels for unlabeled data.
    2. A student model learns from both sparse human labels + VLM pseudo-labels.
    3. Active learning selects samples to annotate within this framework.

💡 Key insight: VLMs have structured prediction biases—their outputs cluster in probability space. This isn’t noise—it’s a teachable signal!


Step 3: PCoreSet—The “Probability Spy” That Finds Hidden Gems

Conventional AL selects samples in feature space (e.g., pixel/embedding distances). PCoreSet targets probability space:

  • 🎯 Goal: Maximize coverage of “underrepresented” probability regions.
  • ⚡ Method:
    • Compute teacher model’s probability vectors for unlabeled data.
    • Greedily select samples farthest from labeled points in probability simplex (see Fig. 3).
    • Formula: x* = argmax min ‖f_r(x) - f_r(x')‖₂

Why it works: Samples in sparse probability regions challenge the teacher’s biases—forcing the student to learn generalizable patterns faster.


Step 4: 11-Dataset Proof—90% Less Data, 29% Higher Accuracy

Results from ImageNet + 10 benchmarks (medical, satellite, action recognition):

SettingImageNet (Acc)10-Dataset Avg (Acc)
No Distillation33.36%63.10%
ActiveKD (Zero-Shot)60.69%76.31%
ActiveKD + PCoreSet61.57%78.81%

Shocking wins:

  • 🚀 +29.07% accuracy on ImageNet with zero-shot distillation.
  • 🚀 PCoreSet outperformed entropy/CoreSet by 12% on fine-grained datasets.
  • 🚀 Few-shot teachers added extra 1.37% gains—creating a self-improving loop.

✨ PCoreSet’s secret: Selecting probabilistically diverse samples also improves the teacher, creating a virtuous cycle (Fig. 6).


Step 5: Deploy This in Your AI Pipeline (Code Included!)

ActiveKD + PCoreSet isn’t theoretical—it’s plug-and-play:

  1. Install libraries: PyTorch, Hugging Face Transformers, CLIP.
  2. Load teacher model: Use zero-shot CLIP or fine-tune with CLAP.
  3. Train student: Optimize with DHO loss (Eq. 2-3):
loss = λ * CrossEntropy(y_true) + (1-λ) * KL_divergence(teacher_logits, student_logits)  

4. Select samples with PCoreSet:

# Pseudocode for PCoreSet selection  
for unlabeled_sample in pool:  
   min_dist = min(l2_distance(prob_vector, labeled_probs))  
query = sample_with_max(min_dist)  

Real-world use cases:

  • 🏥 Medical imaging: Annotate 10x fewer tumor scans.
  • 🛰️ Satellite analysis: Detect disasters with limited labeled geography.
  • 🏭 Industrial IoT: Train defect detectors on small sensor datasets.

If you’re Interested in segmentation Model, you may also find this article helpful: 3 Breakthroughs in RGBD Segmentation: How CroDiNo-KD Revolutionizes AI Amid Sensor Failures

The Future: Beyond Image Classification

ActiveKD’s framework extends to:

  • 🎥 Video action recognition (tested on UCF101).
  • 🧠 Multimodal chatbots (integrating LLaVA/FLAN).
  • ⚠️ Limitation: Currently vision-only. Text/audio support is coming!

Conclusion: Stop Wasting 90% of Your AI Budget

ActiveKD and PCoreSet prove you don’t need petabytes of labeled data to train state-of-the-art AI. By combining:

  • Zero-shot VLMs as teachers,
  • Probability-space active learning,
  • Structured bias as a guide—not noise,

You can achieve higher accuracy with 90% fewer labels. The era of “data starvation” is over.


🚀 Call to Action

  1. Try the codeGitHub Repo (ActiveKD-PCoreSet)
  2. Read the paperarXiv: PCoreSet: Effective Active Learning via Knowledge Distillation
  3. Question for youWhere would YOU deploy ActiveKD first? Comment below! 👇

“The biggest AI cost isn’t compute—it’s annotations. ActiveKD finally cracks this.”
— Lead Researcher, KAIST

Here’s a simplified implementation of the ActiveKD framework with PCoreSet selection based on the paper’s methodology.

# ActiveKD + PCoreSet Implementation
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import models
import numpy as np
from typing import List, Tuple


# ----------------------------
# Vision-Language Teacher Wrapper (CLIP-like)
# ----------------------------
class VisionLanguageTeacher:
    def __init__(self, image_encoder, text_encoder, class_prompts, temperature=1.0):
        self.image_encoder = image_encoder  # f_X
        self.text_encoder = text_encoder    # f_T
        self.class_prompts = class_prompts  # ["a photo of a cat", "a photo of a dog", ...]
        self.temperature = temperature
        self.text_features = self.encode_text(class_prompts)

    def encode_text(self, prompts):
        with torch.no_grad():
            return F.normalize(self.text_encoder(prompts), dim=-1)  # (C, d)

    def predict(self, images):
        with torch.no_grad():
            image_features = F.normalize(self.image_encoder(images), dim=-1)  # (B, d)
            logits = torch.matmul(image_features, self.text_features.T) / self.temperature
            probs = F.softmax(logits, dim=-1)
        return probs


# ----------------------------
# Student Model Wrapper (e.g., ResNet)
# ----------------------------
class StudentModel(nn.Module):
    def __init__(self, base_model, num_classes):
        super().__init__()
        self.backbone = nn.Sequential(*list(base_model.children())[:-1])  # remove classifier
        self.classifier = nn.Linear(base_model.fc.in_features, num_classes)

    def forward(self, x):
        features = self.backbone(x).squeeze()
        return self.classifier(features)

    def predict_proba(self, x):
        return F.softmax(self.forward(x), dim=-1)


# ----------------------------
# Loss Functions
# ----------------------------
def cross_entropy_loss(pred, label):
    return F.cross_entropy(pred, label)

def distillation_loss(student_probs, teacher_probs):
    return F.kl_div(student_probs.log(), teacher_probs, reduction='batchmean')


# ----------------------------
# ActiveKD Trainer
# ----------------------------
def train_activekd(student, teacher, labeled_loader, unlabeled_loader, optimizer, lambda_ce=0.5):
    student.train()
    total_loss = 0

    for (x_l, y_l), (x_u,) in zip(labeled_loader, unlabeled_loader):
        x_l, y_l, x_u = x_l.cuda(), y_l.cuda(), x_u.cuda()

        # Forward
        pred_l = student(x_l)
        probs_u_student = student.predict_proba(x_u)
        probs_u_teacher = teacher.predict(x_u).detach()

        # Loss
        ce = cross_entropy_loss(pred_l, y_l)
        kd = distillation_loss(probs_u_student, probs_u_teacher)
        loss = lambda_ce * ce + (1 - lambda_ce) * kd

        # Optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_loss += loss.item()
    return total_loss


# ----------------------------
# PCoreSet Selection
# ----------------------------
def pcoreset_selection(student, labeled_set, unlabeled_set, query_size):
    with torch.no_grad():
        labeled_probs = [student.predict_proba(x.unsqueeze(0).cuda()).cpu() for x, _ in labeled_set]
        labeled_probs = torch.cat(labeled_probs)

        distances = []
        for x_u in unlabeled_set:
            p_u = student.predict_proba(x_u.unsqueeze(0).cuda()).cpu()
            dists = torch.norm(labeled_probs - p_u, dim=1)
            distances.append(dists.min().item())

        # Select top-k most distant
        selected_indices = np.argsort(distances)[-query_size:]
    return selected_indices


# ----------------------------
# Example Usage Loop
# ----------------------------
def active_learning_loop(model, teacher, dataset, initial_labeled_idx, rounds=10, query_size=10):
    labeled_idx = initial_labeled_idx
    unlabeled_idx = list(set(range(len(dataset))) - set(labeled_idx))

    for r in range(rounds):
        print(f"Round {r+1}/{rounds}")

        # Dataloaders
        labeled_loader = DataLoader([dataset[i] for i in labeled_idx], batch_size=32, shuffle=True)
        unlabeled_loader = DataLoader([dataset[i][0] for i in unlabeled_idx], batch_size=32, shuffle=True)

        # Optimizer
        optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
        train_activekd(model, teacher, labeled_loader, unlabeled_loader, optimizer)

        # PCoreSet Selection
        selected = pcoreset_selection(model, [dataset[i] for i in labeled_idx], [dataset[i][0] for i in unlabeled_idx], query_size)
        new_indices = [unlabeled_idx[i] for i in selected]

        # Update indices
        labeled_idx += new_indices
        unlabeled_idx = list(set(unlabeled_idx) - set(new_indices))

    return model

Leave a Comment

Your email address will not be published. Required fields are marked *