CMKD: Slash 99% Storage Costs & Dominate UDA Challenges
Unsupervised Domain Adaptation (UDA) faces two persistent roadblocks: effectively leveraging powerful modern foundation models and the crippling storage overhead of deploying multiple domain-specific models. A groundbreaking approach merges Vision-Language Pre-training (VLP) like CLIP with innovative techniques—Cross-Modal Knowledge Distillation (CMKD) and Residual Sparse Training (RST)—to smash these barriers, achieving state-of-the-art results while reducing deployment parameters by over 99%. Why Traditional Revolutionizing Unsupervised […]
CMKD: Slash 99% Storage Costs & Dominate UDA Challenges Read More »










